AIRS CO₂ data assimilation with Ensemble Kalman filter: preliminary results

Junjie Liu¹

Eugenia Kalnay² and Inez Fung¹
¹UC Berkeley; ²University of Maryland

Many thanks to Edward Olsen and Moustafa Chahine for kindly providing us their AIRS L2 CO₂ retrievals and guidance! Other collaborators include Yu-Heng Tseng, Michael Wehner and Masao Kanamitsu.

AIRS CO₂ data assimilation with Ensemble Kalman filter: preliminary results

Junjie Liu¹
Inez Fung¹ and Eugenia Kalnay² ¹UC Berkeley;
²University of Maryland

Many thanks to Edward Olsen and Moustafa Chahine for kindly providing us their AIRS L2 CO₂ retrievals and guidance! Other collaborators include Yu-Heng Tseng, Michael Wehner and Masao Kanamitsu.

Motivation & Goals

Motivation:

Accurate carbon flux estimation from inversion needs far more CO₂ observations than current surface obs can provide.

Goals:

- 1. Generate global CO₂ map every 6-hour; start with AIRS, then GoSat
- Propagate AIRS CO₂ in both horizontal and vertical direction through data assimilation and transport model

AIRS CO2 at 18Z01May2003 (+/-3hour)

Outline

- CO₂ simulation in Community Atmospheric Model 3.5 (CAM 3.5)
- Methods to assimilate AIRS CO₂ with Ensemble Kalman Filter (EnKF)
- Preliminary results
- Summary and future plans

CO₂ simulation in CAM3.5

- Community Atmospheric Model 3.5 (CAM 3.5) coupled with Community Land Model 3.5 (CLM 3.5)
 - Finite Volume dynamical core
 - 2.5°x1.9° horizontal resolution, with 26 vertical levels up to 3.5hPa.
- CO₂ is transported as a tracer in CAM 3.5
- Carbon flux forcing
 - Fossil fuel emission (yearly average value in 2003)
 - Ocean C flux (changes with month; Takahashi et al., 2002)
 - Land C flux (changes with month; CASA annually balanced flux from Transcom 3)
- Four-year model integration started from 01Jan 2000

Comparison between model simulation and observations

- Seasonal cycle simulation is pretty good even though the flux is not perfect.
- N-S model gradient is smaller than observations, similar to Engelen at al. 2008.

Ensemble Kalman Filter

✓ Analysis mean $\overline{\mathbf{x}}^a = \overline{\mathbf{x}}^b + \mathbf{K}(\mathbf{y}^o - h(\overline{\mathbf{x}}^b))$, **K** is function of background error and observation error.

 $h(\cdot)$ is the observation operator, which interpolates model forecast to observation space (more details later);

CO₂ observation operator

- Model forecast x^b is CO₂ vertical profile;
- AIRS CO₂ is weighted column Volume Mixing Ratio (vmr);
- => observation operator: interpolate x^b to obs location & calculate model forecast weighted column CO₂ vmr based on CO₂ profile.

$$\mathbf{y}^b = h(\mathbf{x}^b) = \mathbf{A}^T(\mathbf{H}\mathbf{x}^b) = \sum_{i=1}^k a_i(Hx_i^b)$$

 \mathbf{x}^b : model forecast CO_2 vertical profile;

k: the total vertical levels; H: spatial interpolation operator;

y^b: model predicted CO₂ column mixing ratio.

A: averaging kernel; a_i is the element at ith vertical level;

Averaging Kernel

Averaging kernel for 370ppm (black: 90°; red: 45°; green: 0°)

Averaging kernel for 390ppm (black: 90°; red: 45°; green: 0°)

Interpolate averaging kernels based on CO_{2(base)}

 $CO_{2(base)}$ (time=t)=371.92429+1.840618*(t-t0), where t0=00ZJan1, 2002;

- 2. Linearly Interpolate among latitudes;
- 3. Normalize the interpolated averaging kernels, i.e., sum(A)=1.0

CO₂ assimilation method

- AIRS CO₂ observation is a column weighted value;
- Model forecast CO₂ state x^b and analysis state x^a are vertical profiles;
- => How to localize CO₂ column observation to obtain CO₂ vertical profile?

 $\Delta y_i^{o'} = a_i \times (\mathbf{y}^o - h(\overline{\mathbf{x}}^b));$ localize the column observation increment to i^{th} vertical level by the ith averaging kernel element a_i

 $\Delta y_{j,i}^{b'} = a_i \times h(\mathbf{x}_j^b)$; localize the jth ensemble forecast column CO₂ to the i^{th} vertical level by the ith averaging kernel element a_i

AIRS CO₂ observations

00Z02May, 2003 +-3hour

- Some outliers in the AIRS CO2 observations (may not mean bad quality).
- Need some quality control before assimilating these obs.

Quality control of AIRS CO2 observations

00Z02May, 2003 +-3hour

Buddy check: compare each observation to the mean of the observations within 400km.

Bad observations: absolute difference larger than 5ppm; filter out about 8%.

Single CO₂ analysis step

- Analysis increment= analysis-background forecast
- Spatial pattern of analysis increment follows the observation coverage.
- Propagate observation information horizontally.

CO₂ analysis increment vertical profile

 The magnitude of analysis increments in vertical direction follows the shape of averaging kernel.

Experimental design

- No constraints on CO₂ in meteorological run;
- AIRS CO₂ constrains CO₂ vertical profile in CO₂ run.

CO₂ difference between CO₂ run and meteorological run

- 1. Adjustment by AIRS CO₂ spans from 800hPa to 100hPa
- 2. The adjustment is larger in the NH

Fitting to AIRS CO₂ obs

Green: meteorological run;

Red: 6-hour forecast from CO₂ run; black: analysis from CO₂ run

Fitting to the AIRS CO₂ observations has been much improved in CO₂ run.

Summary

- CO₂ seasonal cycle is well simulated by CAM3.5, but N-S gradient is weaker;
- Proposed a procedure to assimilate AIRS CO₂ retrievals with ensemble Kalman filter;
- Assimilation and transport model propagate the AIRS CO₂ observation in both horizontal and vertical directions.
- As expected, CO₂ column mixing ratio from CO₂ run is closer to AIRS CO₂ retrievals than that from meteorological run.

Future plans

- Extend the length of assimilation and use more accurate averaging kernel.
- Compare the results to in-situ CO₂ observations, e.g., aircraft data.
- Develop more sophisticated QC.
- Explore multivariate CO₂ data assimilation.
- Use carbon flux predicted by the online CASA model.
- Based on the simulated experiments of Ji-Sun Kang (UMD), ultimately, estimate carbon flux based on AIRS CO₂ data and GOSAT CO₂ data